首页
搜索
历史搜索
首页 > 新闻中心 > 技术应用

热电偶、热电效应和热电效应原理

2022-10-10 09:35:47| 来源:聚英电子| | 0

  热电偶(thermocouple)是把两种不同材料的金属的一端连接起来,利用热电效应来测量温度的传感器。

  1821年,德国科学家托马斯·约翰·塞贝克发现了电流热效应的逆效应:即当给一段金属丝的两端施加不同温度时,金属丝两端会产生电动势,闭合回路后金属丝中会有电流流过。这种现象被称为“热电效应”,也叫“塞贝克效应”。

  热电效应原理:如图,用两种不同颜色表示两种不同的金属材料,A、B 端在常温环境中用于测温端口,称为冷端。C点为被测端,由于热电效应,在 A端和C端以及B端和C端之间温度不同,所以会产生电势差。而因为两种金属材料的不同,导致这两个电势差不一样,最终A端和B端也有了电势差,经测量AB之间的电势差,再对参考金属特性值和冷端温度进行查表校准,最后就可以通过测量AB端输出的电势差来得到对应C端的温度值了。

  

热电效应原理


  

  热电偶种类

  中国标准化热电偶从1988年1月1日起按IEC国际标准生产,并指定S、R、B、K、J、T、N、E八种标准化热电偶为中国统一设计型热电偶(如图2)。

  

中国标准化热电偶图2


  

  S、R、B型热电偶使用的金属比较贵重,所以价格相对较高;K、T、J、N、E型热电偶使用的金属比较廉价,所以相对价格较便宜。下面介绍这几种热电偶的测温范围以及优缺点:

  S、R、B型热电偶

  S、R型和B型热电偶长期最高使用温度分别为1300℃和1600℃,短期最高使用温度分别为1600℃和1800℃。优势:具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理、化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。

  S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,曾长期作为国际温标的内插仪器。“ITS-90”虽被规定今后不再作为国际温标的内插仪器,但国际温度咨询委员会(CCT)认为,S型热电偶仍可用于近似实现国际温标。

  R型热电偶的综合性能与S型热电偶相当。B型热电偶与S和R相似,但不适用于还原性气氛或含有金属或非金属蒸气气氛中。但其明显的优点是不需用补偿导线进行补偿,因为在0~50℃范围内热电势小于3μV。

  T、R、B型热电偶劣势:此类热电偶的热电势率较小,灵敏度低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵。

  K、N、E、J、T型热电偶

  测温范围以及优势和劣势见表1:

  

测温范围以及优势和劣势


  

  补充:N型热电偶克服了K型热电偶的两个重要缺点:K型热电偶在300~500℃间,由于镍铬合金的晶格短程有序而引起的热电动势不稳定;在800℃左右,由于镍铬合金发生择优氧化引起的热电动势不稳定。

  表1

  热电偶的优缺点

  优点:

  a.温度范围广:从低温到喷气引擎废气,热电偶适用于大多数实际的温度范围。热电偶测量温度范围在–200°C至+2500°C之间,具体取决于所使用的金属线。

  b.坚固耐用:热电偶属于耐用器件,抗冲击振动性好,适合于危险恶劣的环境。

  c.响应快:因为它们体积小,热容量低,热电偶对温度变化响应快,尤其在感应接合点裸露时。它们可在数百毫秒内对温度变化作出响应。

  d.无自发热:由于热电偶不需要激励电源,因此不易自发热,其本身是安全的。

  缺点:

  a.信号调理复杂:将热电偶电压转换成可用的温度读数必须进行大量的信号调理。一直以来,信号调理耗费大量设计时间,处理不当就会引入误差,导致精度降低。

  b.精度低:除了由于金属特性导致的热电偶内部固有不精确性外,热电偶测量精度只能达到参考接合点温度的测量精度,一般在1°C至2°C内。

  c.易受腐蚀:因为热电偶由两种不同的金属所组成,在一些工况下,随时间而腐蚀可能会降低精度。因此,它们可能需要保护;且保养维护必不可少。

  d.抗噪性差:当测量毫伏级信号变化时,杂散电场和磁场产生的噪声可能会引起问题。绞合的热电偶线对可能大幅降低磁场耦合。使用屏蔽电缆或在金属导管内走线和防护可降低电场耦合。测量器件应当提供硬件或软件方式的信号过滤,有力抑制工频频率(50 Hz/60 Hz)及其谐波。

  热电偶和热电阻的选择要素

  我们可以根据以下要素来进行热电偶和热电阻的选择。

  需要测量的温度范围:500℃以上一般选择热电偶,500℃以下看应用环境来选择。

  测量范围选择:热电偶所测量的一般指“点”温,热电阻通常用于测量空间温度。

  冷端补偿

  由于热电效应的原理。因此,需要一个额外的温度传感器来测量参考点温度,此参考点也就是我们常说的冷端补偿点。

  常见的几种冷端补偿传感器分别如下:

  1.热敏电阻:响应快、封装小。但要求线性,精度有限,尤其在宽温度范围内。要求激励电流,会产生自发热,引起漂移。结合信号调理功能后的整体系统精度差,只适合测量精度低、低成本的应用场合。

  2.电阻式温度测量器(RTD):RTD相比热敏电阻,更佳精确、稳定且特性线性,但封装尺寸和成本,相对热敏电阻高。因为需要良好匹配的激励源和采样电路,所以设计相对更复杂,需要的外围器件更好。用RTD作为冷端补偿的热电偶测量系统,通常对系统级精密度要求更高。

  3.集成式温度传感器:集成温度传感器是一种以半导体工艺制成的集成式测温元件。通过半导体工艺技术,将测温等模拟单元获得的信息数字化输出,高集成度,可获得远低于1°C的系统级精度。外围电路设计简单,可直接和MCU进行通讯,同样针对高精度热电偶采集系统的冷端补偿方案,使用和设计都最为简单。


联系销售
销售王经理微信 销售王经理
微信公众号 微信公众号
服务热线
400-6688-400